New lower bounds for the first variable Zagreb index
نویسندگان
چکیده
In this paper we study lower bounds in a unified way for large family of topological indices, including the first variable Zagreb index M 1 ? . Our aim is to obtain sharp inequalities and characterize corresponding extremal graphs. The main results provide several vertex-degree-based indices. These are new even Zagreb, inverse forgotten
منابع مشابه
On the first variable Zagreb index
The first variable Zagreb index of graph $G$ is defined as begin{eqnarray*} M_{1,lambda}(G)=sum_{vin V(G)}d(v)^{2lambda}, end{eqnarray*} where $lambda$ is a real number and $d(v)$ is the degree of vertex $v$. In this paper, some upper and lower bounds for the distribution function and expected value of this index in random increasing trees (rec...
متن کاملBounds on First Reformulated Zagreb Index of Graph
The first reformulated Zagreb index $EM_1(G)$ of a simple graph $G$ is defined as the sum of the terms $(d_u+d_v-2)^2$ over all edges $uv$ of $G .$ In this paper, the various upper and lower bounds for the first reformulated Zagreb index of a connected graph interms of other topological indices are obtained.
متن کاملOn the Bounds of the First Reformulated Zagreb Index
The edge version of traditional first Zagreb index is known as first reformulated Zagreb index. In this paper, we analyze and compare various lower and upper bounds for the first reformulated Zagreb index and we propose new lower and upper bounds which are stronger than the existing and recent results [Appl. Math. Comp. 273 (2016) 16-20]. In addition, we prove that our bounds are superior in co...
متن کاملOn the second order first zagreb index
Inspired by the chemical applications of higher-order connectivity index (or Randic index), we consider here the higher-order first Zagreb index of a molecular graph. In this paper, we study the linear regression analysis of the second order first Zagreb index with the entropy and acentric factor of an octane isomers. The linear model, based on the second order first Zag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2022
ISSN: ['1872-6771', '0166-218X']
DOI: https://doi.org/10.1016/j.dam.2021.09.030